Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Emerg Infect Dis ; 29(4): 782-785, 2023 04.
Article in English | MEDLINE | ID: covidwho-2270039

ABSTRACT

We assessed susceptibility of dogs to SARS-COV-2 Delta and Omicron variants by experimentally inoculating beagle dogs. Moreover, we investigated transmissibility of the variants from infected to naive dogs. The dogs were susceptible to infection without clinical signs and transmitted both strains to other dogs through direct contact.


Subject(s)
COVID-19 , Animals , Dogs , COVID-19/veterinary , SARS-CoV-2
3.
Animals (Basel) ; 13(4)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2232794

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic, caused by the severe acute respiratory syndrome, coronavirus 2 (SARS-CoV-2), has resulted in unprecedented challenges to healthcare worldwide. In particular, the anthroponotic transmission of human coronaviruses has become a common concern among pet owners. Here, we experimentally inoculated beagle dogs with SARS-CoV-2 or Middle East respiratory syndrome (MERS-CoV) to compare their susceptibility to and the pathogenicity of these viruses. The dogs in this study exhibited weight loss and increased body temperatures and shed the viruses in their nasal secretions, feces, and urine. Pathologic changes were observed in the lungs of the dogs inoculated with SARS-CoV-2 or MERS-CoV. Additionally, clinical characteristics of SARS-CoV-2, such as increased lactate dehydrogenase levels, were identified in the current study.

4.
Pulm Pharmacol Ther ; 80: 102189, 2023 06.
Article in English | MEDLINE | ID: covidwho-2182585

ABSTRACT

Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.


Subject(s)
COVID-19 , Animals , Cricetinae , Mice , Humans , SARS-CoV-2 , Pandemics , Antibodies, Neutralizing , Mesocricetus , Disease Models, Animal
5.
Lab Anim Res ; 38(1): 17, 2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1910369

ABSTRACT

BACKGROUND: As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. RESULTS: In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. CONCLUSIONS: This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.

6.
Transbound Emerg Dis ; 69(5): e3297-e3304, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1879106

ABSTRACT

The ongoing coronavirus disease 2019 pandemic and its overlap with the influenza season lead to concerns over severe disease caused by the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) co-infections. Using a Syrian hamster co-infection model with SARS-CoV-2 and the pandemic influenza virus A/California/04/2009 (H1N1), we found (a) more severe disease in co-infected animals, compared to those infected with influenza virus alone but not SARS-CoV-2 infection alone; (b) altered haematological changes in only co-infected animals and (c) altered influenza virus tropism in the respiratory tracts of co-infected animals. Overall, our study revealed that co-infection with SARS-CoV-2 and influenza virus is associated with altered disease severity and tissue tropism, as well as haematological changes, compared to infection with either virus alone.


Subject(s)
COVID-19 , Coinfection , Influenza A Virus, H1N1 Subtype , Influenza, Human , Rodent Diseases , Animals , COVID-19/veterinary , Coinfection/veterinary , Cricetinae , Humans , Mesocricetus , SARS-CoV-2 , Viral Tropism
7.
Mol Ther ; 30(5): 1994-2004, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1612107

ABSTRACT

Adeno-associated virus (AAV)-mediated gene delivery holds great promise for gene therapy. However, the non-invasive delivery of AAV for lung tissues has not been adequately established. Here, we revealed that the intratracheal administration of an appropriate amount of AAV2/8 predominantly targets lung tissue. AAV-mediated gene delivery that we used in this study induced the expression of the desired protein in lung parenchymal cells, including alveolar type II cells. We harnessed the technique to develop severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-susceptible mice. Three kinds of immune function-relevant gene knockout (KO) mice were transduced with AAV encoding human angiotensin-converting enzyme 2 (hACE2) and then injected with SARS-CoV-2. Among these mice, type I interferon receptor (IFNAR) KO mice showed increased viral titer in the lungs compared to that in the other KO mice. Moreover, nucleocapsid protein of SARS-CoV-2 and multiple lesions in the trachea and lung were observed in AAV-hACE2-transduced, SARS-CoV-2-infected IFNAR KO mice, indicating the involvement of type I interferon signaling in the protection of SARS-CoV-2. In this study, we demonstrate the ease and rapidness of the intratracheal administration of AAV for targeting lung tissue in mice, and this can be used to study diverse pulmonary diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/therapy , Dependovirus/genetics , Disease Models, Animal , Disease Susceptibility , Lung/pathology , Mice , Mice, Transgenic , SARS-CoV-2/genetics
8.
Emerg Microbes Infect ; 11(1): 406-411, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1595567

ABSTRACT

Patients with recent pandemic coronavirus disease 19 (COVID-19) complain of neurological abnormalities in sensory functions such as smell and taste in the early stages of infection. Determining the cellular and molecular mechanism of sensory impairment is critical to understand the pathogenesis of clinical manifestations, as well as in setting therapeutic targets for sequelae and recurrence. The absence of studies utilizing proper models of human peripheral nerve hampers an understanding of COVID-19 pathogenesis. Here, we report that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly infects human peripheral sensory neurons, leading to molecular pathogenesis for chemosensory impairments. An in vitro system utilizing human embryonic stem cell (hESC)-derived peripheral neurons was used to model the cellular and molecular pathologies responsible for symptoms that most COVID-19 patients experience early in infection or may develop as sequelae. Peripheral neurons differentiated from hESCs expressed viral entry factor ACE2, and were directly infected with SARS-CoV-2 via ACE2. Human peripheral neurons infected with SARS-CoV-2 exhibited impaired molecular features of chemosensory function associated with abnormalities in sensory neurons of the olfactory or gustatory organs. Our results provide new insights into the pathogenesis of chemosensory dysfunction in patients with COVID-19.


Subject(s)
COVID-19/complications , Olfaction Disorders/etiology , SARS-CoV-2 , Sensory Receptor Cells/virology , Taste Disorders/etiology , Angiotensin-Converting Enzyme 2/physiology , Humans
9.
J Infect Dis ; 224(11): 1861-1872, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1493829

ABSTRACT

Germinal centers (GCs) elicit protective humoral immunity through a combination of antibody-secreting cells and memory B cells, following pathogen invasion or vaccination. However, the possibility of a GC response inducing protective immunity against reinfection following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unknown. We found GC activity was consistent with seroconversion observed in recovered macaques and humans. Rechallenge with a different clade of virus resulted in significant reduction in replicating virus titers in respiratory tracts in macaques with high GC activity. However, diffuse alveolar damage and increased fibrotic tissue were observed in lungs of reinfected macaques. Our study highlights the importance of GCs developed during natural SARS-CoV-2 infection in managing viral loads in subsequent infections. However, their ability to alleviate lung damage remains to be determined. These results may improve understanding of SARS-CoV-2-induced immune responses, resulting in better coronavirus disease 2019 (COVID-19) diagnosis, treatment, and vaccine development.


Subject(s)
COVID-19 , Germinal Center , Immunity, Humoral , Reinfection/immunology , Animals , Antibodies, Viral , COVID-19/immunology , Humans , Lung/pathology , Lung/virology , Macaca , Memory B Cells , Seroconversion
10.
Clin Lab ; 67(8)2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1355180

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 pandemic. METHODS: In this study, the antiviral activity of a far-UVC (222 nm) microplasma flat lamp against SARS-CoV-2 was evaluated. RESULTS AND CONCLUSIONS: Immediate inactivation of up to 99.99% of the coronavirus was achieved with a dose of less than 8 mJ/cm2 and complete inactivation was observed by real-time RT-PCR; therefore, far-UVC (222 nm) is a promising candidate for the effective inactivation of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Disinfection , Humans , Virus Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL